Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression

نویسندگان

  • Makoto Ikeya
  • Shinji Takada
چکیده

In vertebrates, each vertebra along the anteroposterior axis has a characteristic structure. It has recently been shown that several transcription factors and cell signaling molecules expressed in the primitive streak ectoderm and/or the tailbud play essential roles in establishing the correct anteroposterior specification of vertebrae during mouse development. Here, we report that Wnt-3a mutants exhibit homeotic transformations in the vertebrae along their entire body axis. In addition, reduced expression of cdx-1, the mutation of which results in an anterior transformation, as occurs in Wnt-3a mutants, was observed in the primitive streak and tail bud region of Wnt-3a mutant embryos. These results indicate that Wnt-3a is necessary for correct anteroposterior patterning of vertebra, and that cdx-1 may be one of the mediator genes of Wnt-3a signaling in this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis.

Regulation of Wnt signaling is essential for embryonic patterning. Sfrps are secreted Wnt antagonists that directly interact with the Wnt ligand to inhibit signaling. Here, we show that Sfrp1 and Sfrp2 are required for anteroposterior (AP) axis elongation and somitogenesis in the thoracic region during mouse embryogenesis. Double homozygous mutations in Sfrp1 and Sfrp2 lead to severe shortening...

متن کامل

Wnt-3a regulates somite and tailbud formation in the mouse embryo.

Amphibian studies have implicated Wnt signaling in the regulation of mesoderm formation, although direct evidence is lacking. We have characterized the expression of 12 mammalian Wnt-genes, identifying three that are expressed during gastrulation. Only one of these, Wnt-3a, is expressed extensively in cells fated to give rise to embryonic mesoderm, at egg cylinder stages. A likely null allele o...

متن کامل

Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite.

Shortly after their formation, somites of vertebrate embryos differentiate along the dorsoventral axis into sclerotome, myotome and dermomyotome. The dermomyotome is then patterned along its mediolateral axis into medial, central and lateral compartments, which contain progenitors of epaxial muscle, dermis and hypaxial muscle, respectively. Here, we used Wnt-11 as a molecular marker for the med...

متن کامل

Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus

Previous gain-of-function assays in Xenopus have demonstrated that Xwnt-3a can pattern neural tissue by reducing the expression of anterior neural genes, and elevating the expression of posterior neural genes. To date, no loss-of-function studies have been conducted in Xenopus to show a requirement of endogenous Wnt signaling for patterning of the neural ectoderm along the anteroposterior axis....

متن کامل

Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a.

Members of the Wnt family of signaling molecules are expressed differentially along the dorsal-ventral axis of the developing neural tube. Thus we asked whether Wnt factors are involved in patterning of the nervous system along this axis. We show that Wnt-1 and Wnt-3a, both of which are expressed in the dorsal portion of the neural tube, could synergize with the neural inducers noggin and chord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2001